End-to-end Dense Video Captioning as Sequence Generation

Wanrong Zhu¹, Bo Pang², Ashish V. Thapliyal², William Yang Wang¹, Radu Soricut²

¹UC Santa Barbara, ²Google Research

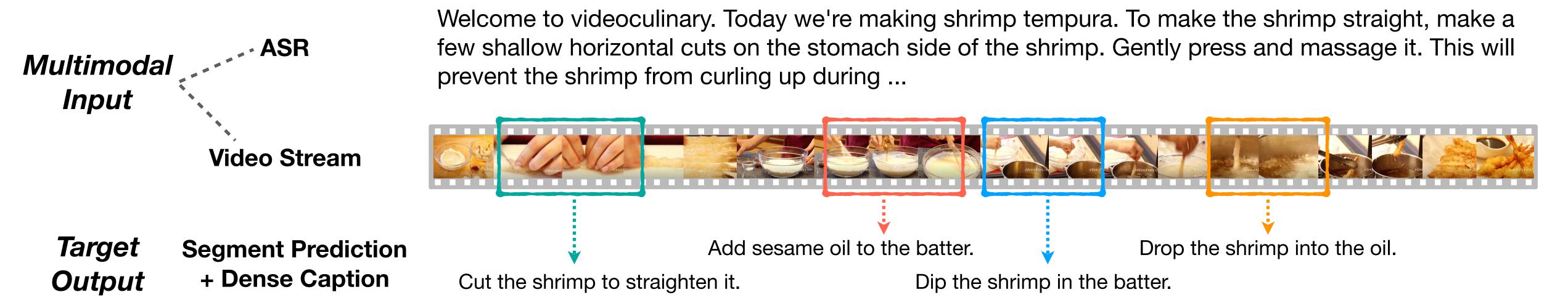


Figure 1: An example of the input video and output segmentations and captions for the dense video captioning task from the YouCook2 dataset.

Results

Motivation

Dense video captioning (DVC) aims to identify the events of interest in an input video, and generate descriptive captions for each event. Figure 1 shows an example. Previous approaches usually follow a two-stage generative process, which first proposes a segment for each event, then renders a caption for each identified segment. In this work, we show how to model the two subtasks of dense video captioning jointly as *one* sequence generation task, and simultaneously predict the events and the corresponding descriptions.

Input Formulation For Multimodal Signals

We provide the multimodal input (video stream)

Ground Truth	ASR Token Inc Timestam		2 1s Intersection	10 8s
Prediction:	ASR Token Index: Timestamps:	1 0s	8 6s Union	
 Intersect 	Prediction: [1 , 8] ion: [2 , 8] → 7 toke , 10] → 10 tokens	ens	<u>Timestamp-based IoU</u> GT: [1s, 8s], Prediction: [0s, 6 Intersection: [1s, 6s] → 5s Union (8s): [0s, 8s] → 8s IoU = 5 / 8 	os]

Figure 4: We use Intersection-over-Union (IoU) to measure segmentation performance. Here we compare the token index-based and timestamp-based IoU used in our study.

1. Target String Formulation

Target Formulation	Cknt?	Seg-	only	Seg+Cap			
Formulation	Скри.	mIoU	F1	mIoU	BLEU-4		
Random Par	tition	37.7	23.5	_	_		
Torring bogod	_	33.6	24.5	19.7	0.1		
Tagging-based	T5	12.1	2.8	6.7	0		
I ongth bagad	_	36.3	25.8	33.6	0.2		
Length-based	T5	42.7	31.2	42.8	1.8		

3. Effects of Pretraining

Dataset	Cknt?	Seg-	only	Seg+Cap			
Dataset		mIoU	F1	$\begin{array}{cccc} 3.0 & 32.7 \\ 7.2 & 38.1 \\ 6.9 & 37.8 \end{array}$	BLEU-4		
	_	13.0	9.4	16.5	0.2		
Vanaala	Τ5	24.1	14.1	24.2	0.9		
Youcook2	WikiHow	22.6	13.3	23.3	0.7		
	WikiHow T5	27.8	16.9	30.3	3.0		
	_	33.9	23.0	32.7	0.1		
ViTT	T5	37.9	27.2	38.1	0.6		
VII I	WikiHow	38.2	26.9	37.8	0.4		
	WikiHow T5	41.9	31.3	42.4	1.3		

Table 3: Performance reported with the SimpleConcat setting. For both YouCook2 and ViTT datasets, there are significant performance improvements from utilizing pretrained checkpoints in terms of both segmentation metrics and captioning metrics.

4. Effects of Joint Modeling

We observe a general trend in Table 2 where the Seg+Cap model outperforms the Seg-only model on the mIoU score. This indicates that with the right formulation, the segmentation subtask can indeed benefit from joint learning with a related captioning subtask.

and ASR tokens) to the encoder in two ways:

- Simple Concatenation: concatenate the sequence of ASR token embeddings and the sequence of projected visual features.
- Temporal Embedding (+Emb_{Time}): express the temporal alignment more explicitly in the input by adding learned temporal embeddings to both ASR tokens and visual frames.

Target String Formulations

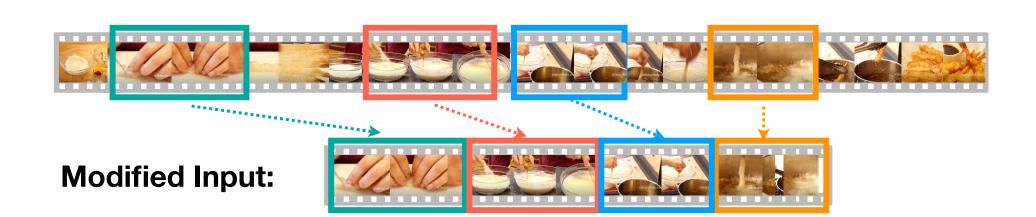


Figure 2: Modified dense video captioning: a simplified setting where the segments are concatenated to form the

Table 1: In the modified setting for YouCook2, the lengthbased formulation achieves higher performance across the board when trained from scratch, and benefits from the T5 checkpoint.

2. Input Formulation

Dataset	Input Formulation	Seg-	only	Seg+Cap			
Dataset	Formulation	mIoU	F1	mIoU	BLEU-4		
	Random	20.6	10.5	_	_		
Youcook2	SimpleConcat	27.8	16.9	30.3	3.0		
	$+\mathrm{Emb}_{\mathrm{Time}}$	26.5	15.8	28.7	2.6		
ViTT	Random	21.9	12.5	-	_		
	SimpleConcat	41.9	31.3	42.4	1.3		
	$+\mathrm{Emb}_{\mathrm{Time}}$	41.6	30.8	43.2	1.2		

Table 2: For the vanilla DVC tasks on YouCook2 and ViTT, results using SimpleConcat compared to their counterparts using Emb_{Time} are mixed, both outperform the baseline of random partition with non-trivial improvements.

Showcase

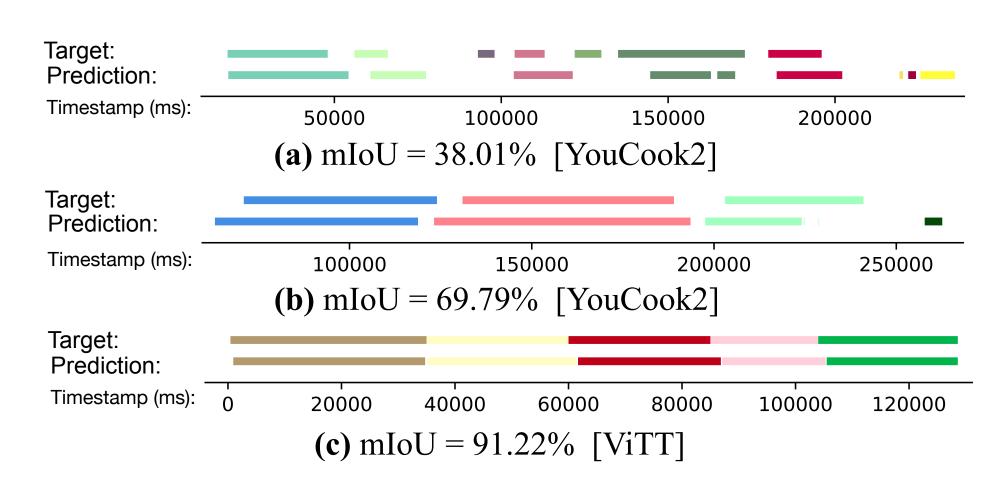


Figure 5: Example segmentation predictions corresponding to different mIoU scores.

Ιο	υU	Segment Border (ms)	Caption
Tgt. D 1 90.	007	[58000.0, 77000.0]	whisk eggs and season with salt
Tgt. Pred. 90.	U70	[57309.0, 78429.5]	whisk the eggs in the deep plate
Tgt. Pred. 99.	207	[28000.0, 45000.0]	chop up the garlic in the food processer
Pred. ^{99.}	J /0	[28005.0, 44894.0]	chop garlic and place in the food processor
Tgt. Pred. 94.	70%	[64199.0, 98080.0]	Preparining remaining ingredients
			Chopping the remaining ingredients
Tgt. 07	007	[65100.0, 124729.0]	Blow-drying the roots Blow-drying hair
Pred. 97.	U/0	[63239.5, 124714.5]	Blow-drying hair

modified input with gaps removed.

ASR Input:	welcome	to	our	channel	we	will	start	by	preparing	the	lamb	chops	
	•	event o	(#token=	=4)	4			event 1	(#token=8	3)			-
Target Output with the	Tagging-	based F	Tormula	tion									
Partition-only:	<sep></sep>	<pad></pad>	<pad></pad>	<pad></pad>	<sep></sep>	<pad></pad>	<pad></pad>	<pad></pad>	> <pad></pad>	<pad< td=""><td>><pad></pad></td><td>> <pad></pad></td><td></td></pad<>	> <pad></pad>	> <pad></pad>	
Partition+Captioning:	<sep></sep>	opening	sentence	e <pad></pad>	<sep></sep>	prepare	the	lamb	chops	<pad< td=""><td>> <pad></pad></td><td>> <pad></pad></td><td></td></pad<>	> <pad></pad>	> <pad></pad>	
Target Output with the	Target Output with the Length-based Formulation												
Partition-only:	<sep></sep>	4			<sep></sep>	8							
Partition+Captioning:	<sep></sep>	4 openii	ng sentel	nce	<sep></sep>	8 prepa	are the	lam	b chops				

Figure 3: To jointly model segmentation and captioning subtasks as one single sequence generation task, we use the tagging-based and the length-based target formulations to encode both segmentation and captioning predictions in the target string. Here we show examples for the modified dense video captioning.

Table 4: Example caption predictions where the IoU \geq 90% between the target (Tgt.) and the predicted (Pred.) segments. The first two examples are from YouCook2, the last two examples are from ViTT.

